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An Unsplit 3D Upwind Method for Hyperbolic Conservation Laws
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An unsplit upwind methad for solving hyperbolic conservation laws
in three dimensions is developed. This paper derives the algorithm by
generalizing a two-dimensional advection algorithm of Van Leer and
Colella to three dimensions and then making appropriate modifications.
The method is implemented using the equations of gas dynamics.
Several test prablems are computed to both verify and digplay the
hehavior of the method. These test problems include a 1D blast wave,
a 2D shock reflection off a 30° ramp, and a 3D astrophysical jet.
© 1994 Academic Press, Inc.

INTRODUCTION

This article describes an unsplit upwind method for
solving hyperboiic conservation laws in three dimensions,
The numerical solution of systems of hyperbolic conserva-
tion laws has a rich and long history. Even a book-length
discussion of this topic would not sufficiently cover the
subject because of the amount of work invested in the sub-
ject area. The reason why such a great deal of work has been
done is the large number of times physical models yield
mathematical descriptions in conservation form. Even
models that do not strictly meet the structural criteria of
hyperbolic conservation laws can often be studied using a
simpler model in the correct form. A well-known example of
this kind of simplification is the Navier-Stokes equations
and their inviscid limit, the Euler equations.

In this paper, one path in the development of upwind
methods is outlined. Its only purpose is to give the necessary
background for this paper. Therefore the description of how
upwind methods were developed and the many ways in
which they have evolved is very incomplete. A more
thorough description can be found in the review article of
Lax, Harten, and van Leer [1]. The starting point in this
summary is the method of Courant, Issacson, and Rees [2].
Although their paper is probably not the first to use upwind
differencing (also called donor-cell differencing), it is the
first to recognize the connection between characteristics of
partial differential equations and proper differencing. Later
Godunov generalized the method of Courant, Isaceson, and
Rees to systems of hyperbolic conservation laws [3].
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Godunov solved the one-dimensional Lagrangian equa-
tions of inviscid fluid dynamics using the nonlinear
generalization of upwinding—the solution of the Riemann
problem, Methods using solutions of Riemann problems are
often collectively referred to as Godunov methods. It is
important to note the methods described in this paragraph
are all first order.

Only after much time did work continue along the path
described above. Because of the slow rates of convergence of
first-order methods and the apparent complexity of the
Riemann problem, numerical calculations were usually
made with second-order methods augmented with an artifi-
cial dissipation (Richtmyer and Morton [4]). Although
artificial dissipation methods have a mathematical basis,
they all seem to require adjustment from problem to
problem. If there is too much dissipation added to the
problem, structures of interest are diffused or eliminated. If
too little dissipation is added, numerically generated solu-
tions contain unphysical oscillations. Van Leer decided to
attack the problem of numerical oscillations using higher
order monotone schemes. Monotone schemes, by their
design, do not allow spurious oscillations. In his search for
higher order monotone schemes, he resurrected the work of
Godunov. Van Leer's work generalizes Godunov's method
to second order using a method called MUSCL {57. Colella
and Woodward simplified the method and incrcased the
spatial accuracy to third order [67]. Colella and Woodward
have further argued that their methods are competitive with
or superior 1o other numerical methods for the solution of
the equations of gas dynamics in their review article [7].

In [8] Colella introduced an advection scheme and its
correspending generalization to hyperbolic systems in two
dimensions. The scheme for the advection equation is an
unsplit second-order advection method set within a predic-
tor—corrector framework. The advection scheme is for ten-
sor product meshes, The method for hyperbolic systems not
only generalizes the advection scheme but also generalizes
the geometry to any smooth two-dimensional curvilinear
coordinate system. Colella’s rationale for this departure
from operator splitting is twofold. Unsplit schemes are
customarily used in a variety of applications, yet these same
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areas are not benefiting from the advantages of upwind
methods. Colella also has specific target applications which
are front tracking and implicit—explicit algorithms. In addi-
tion, unsplit algorithms can preserve symmetries normally
destroyed by splitting. In the 3D test problem presented in
this paper, symmetries arc preserved using the unsplit
method that are not preserved in calculations found in the
literature. This paper is an extension to three-dimensional
tensor product grids of Colella’s unsplit method given in
[8]. The following sections describes Colella’s 2D unsplit
advection scheme and its generalization to tensor-product
grids in three dimensions. The 3D advection scheme is then
generalized to 3D systems of conservation laws, The use of
curvilinear coordinates is left for future work. Van Leer [9]
outlined unsplit advection schemes in two and three dimen-
sions identical to those presented here and in [8]. His
generalization to systems takes a different direction.

The remainder of this paper is divided into several sec-
tions. The first section briefly describes hyperbolic conserva-
tion laws and a solution with special initial conditions called
the Riecmann problem. Because of the complexity of the
three-dimensional difference schemes a section is devoted to
notation. The notation is designed in a manner similar to
indicial notation in tensor calculus where the same problem
of notational complexity is present. After the section on
notation the brief overview of advection schemes and their
corresponding generalizations is retraced in more detail
This section is augmented with the details of the three-
dimensional difference scheme and the corresponding
hyperbolic system solver. The method is implemented for
the Euler equations of gas dynamics in the following section.
Finally, some examples are presented for calculations in
one, two, and three dimensions.

HYPERBOLIC SYSTEMS

Three-dimensional hyperbolic systems of equations arise
in many ateas, Our attention is restricted to those systems
which have the form

532+6F1(U)+3F2(U)+5F3(U)=0

ot ox ay oz ’ (1)

where
U:R*% [0, c0]= R™, Fi,3:R"=R"
and whose initial conditions are

U(xsy1 Zs t=0)= Uﬁ(x5y5 Z).

These equations are categorized as being in conservation
form and are often called conservation laws. The solutions
that arise from these equations can be discontinuous and

JEFF SALTZMAN

nonunique. Care must be taken to choose the correct physi-
cal solutions. An extensive discussion of hyperbolic systems
can be found in [ 1G],

An important subproblem of (1), given the initial condi-
tions

if x>0,
x <0,

U(x,0)= {U“’ (2)

UL,

is called the Riemann problem. The Riemann problem plays
a central role in the difference schemes derived betow, The
solution is a nonlinear combination of left and right moving
waves that can be quite complicated. Analytic solutions for
many interesting systems of equations are unknown. For
strictly hyperbolic systems with initial conditions that are
sufficiently close to each other, there does exist a unique
solution.

Fortunately only a small amount of information is
required from the solution of the Riemann problem and
many problems that have very complicated Riemann
problems can still be efficiently approximated. There is a
large body of literature available for the approximate solu-
tion of the Riemann problem [11-15].

NOTATION

Notation is introduced which allows the concise expres-
sion of difference schemes in one, two, or three dimensions.
The domains of these finite difference methods are lattices.
The lattices may be as general as tensor products of non-
uniform one-dimensional grids. All of the schemes can be
written for these general grids. For simplicity the lattices are
restricted to be tensor products of uniform but possibly
unequally spaced one-dimensional grids. The cartesian grid
spacings are indexed as

Ax, Ay, Az = Ax,, Ax,, Ax;5.

Lattice functions use subscripts for spatial descriptions and
superscripts for temporal specification. A lattice function,
possibly vector, can be represented as

Uli dx, j Ay, k Az,n Aty <= U] .

The convention that spatial integer-valued subscripts are
celi-centered while half integer-valued subscripts are face-
centered is used. The special case where all the spatial
indices are half integer values is called vertex centered. To
simplify notation further, implied indexing is used. This
means that if an index is missing, it has some default value.
The default values are integer values with the foliowing rule:

U=u?

ik
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An application of this rule is

Un+-=,’2 Uﬂ+l,n'2
j—1

i j—~1k"

Periodicities in the indices appear in the two- and
threc-dimensional difference schemes. To exploit these
periodicities, indexing functions mapping integers to index
place holders are used. In three spatial dimensions the
foilowing index functions are introduced.

a=a(lya(l)=ia(2}Y=Ffa(3)=k

B=p): pl)=j, B(2) =k, (3} =i
=y (D) =k y(2)=1y(3)=J

The correspending index functions in two dimensions are

a=a(f):o{l)=ia(2)=j
B=pUY p(1)=j, B(2)=i.

The number of space dimensions will always be clear from
the context.

Only two difference operators are needed in this paper.
They are the backward difference operator and the trans-
lation operator. The difference operator is limited to spatial
differences. The backward difference operator is defined as

A U=U-U,_,., 1=1,23

The translation operator is defined as

TuU=Uu+h 1=152=3

It is necessary for indices of the lattice spacing, flux func-
tions, and coefficients of the advection equations to be
periodic with the appropriate spatial dimension N. For
N=2 or 3 we define

Axy= A% g w1 Fi=Finogns €1 = Crmod N+
Finally an “inverse velocity” is defined:
A, =4di/dx,.
DIFFERENCE SCHEMES

The starting point for this discussion of upwind schemes
is the method of Courant, Issacson, and Rees [2]:

u"+l-u

This method has many geometric and algebraic interpreta-

581/115/1-11
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tions. The geometric picture in Fig. 1 is very appealing. By
interpreting u as a piecewise constant mass density, the
shaded areas in Fig. la represent the amount of mass u 4x.
Figure 1b shows the mass distributions after translation a
distance ¢ A1. After translation, the mass is summed within
gach cell and a new mass density " * ! is found by dividing
the mass by the width of the cell. The new mass density
distribution is displayed in Fig. 1c.

Using this geometric approach most of the notable
properties of this method can be seen from inspection. If the
CFL (Courant, Friedrichs, Lewy) number, ¢ 4¢/4x, does
not exceed one, monotonicity of the solution can be
observed from the fact that new mass densities are positively
weighted sums of the old mass densities and from con-
sistency the positive weights sum to unity. Monotonicity
ensures stability in the discrete maximum norm. Since the
scheme 1s both stable and consistent, it is convergent.
Conservation is easily seen because mass leaving one cell
goes into the next. The first-order rate of convergence is
ascertained from the first-order truncation error of the
scheme,

The method of Godunov is a generalization of the
method of Courant, Issacson, and Rees. The difference
equation for a hyperbolic system in one dimension is

U U SRR
At Ax

where
UT:llj’Z?:R](U, Uigr)

The function R(U, U,,;} is a solution of a Riemann
problem specified by the two states U/ and U,,,. The

a

FIG. 1. Geometrical picture of a single time step of the method of
Courant, Issacson, and Rees {2].



156

method of Courant, Issacson, and Rees can be derived from
Godunov’s method by substituting a linear flux function
(F(u) = cu) and noting the solution of the Riemann problem
is the upstream state. The upstream state for a linear flux
function with positive coefficient (¢>0) is the left state.
Fourier analysis of the linearized system yields CFL num-
bers constrained not to exceed unity. The CFL numbers
would use the characteristic speeds of the gradient of the
flux function instead of an advection velocity.

Godunov used this method for the solution of the
Lagrangian equations of compressible fluid flow. Both of
these methods, as mentioned in the Introduction, are first
order. Experience has shown these methods to be nearly
impractical for computational purposes. Unfortunately, the
order of these upwind methods was not increased until
much later. Instead, artificial viscosity methods of one type
or another were used to stabilize oscillations in central
difference methods around the discontinuities {47.

Van Leer, in his series of papers, arrived at a second-order
scheme that is a generalization of the method of Courant,
Issacson, and Rees. The idea behind his scheme is to use
linear profiles, instead of piecewise constant profiles, for the

= \\.\\\_ X \ |
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Geometrical picture of a single time step of the method of

FIG. 2.
van Leer.
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mass densities discussed in the first-order linear scheme
above. The initial profile which is piecewise constant in
Fig. 2a. In Fig. 2b, a piecewise linear profile is derived using
central differences. Figure 2¢ shows the slopes being limited
so that no new maxima or minima are formed. As in the
first-order advection scheme above, the profile is then trans-
lated (Fig. 2d) and the mass densities are summed (Fig. 2¢)
to obtain the piecewise constant profile at the next time step,
An algebraic description of van Leer’s algorithm is

et Awinf
At Ax ’
where
i cAry —
u7++1’fzz=“+§(1 —7;>A;u
and

T & sgn(u; . —#;i_y), if Au,, 4,u>0
U= .
i 0, otherwise.

such that

S=min(2 |du,, ), 2148, 3 |tt 1 — iy 1)
A fourth-order estimate of the linear profiles can be used
without affecting the monotonicity of the scheme [8]. A
new expression for § may be subsituted for the above

gxpression:

S=min(2 |d,u, ]|, 2 |4.u, % Mt —ui_y)
Aé(zuwl +A—£ui—1))|)'

The corresponding generalization of van Leer's scheme
again uses the solution of a Riemann problem:

Urz+l_U A.F (Un+1,f2)
+ it

i+ 172 =0 3
At Ax (3a)
Ut =R HULE, (o UIEED) (3b)
" 1 4t 8F N\ —
(_)U{—:f/f: U+.2_([_36_UI) a4,U
(3c) -

. 1 At OF )\ —
(+,U,.+*11,’22=T,-(U—§(1+:d—xé-al) A!.U).

The addition of the central difference term does not affect
the stability of the advection scheme or the linearization
of (3a). For the hyperbolic systems described above, two-
and three-dimensional schemes can be designed using
splitting methods [ 16, 17]. However, the direction taken in
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this paper is to develop unsplit methods. Colella, in [8],
designed a 2D advection algorithm using a geometric
approach that can be called a generalization of the method
of Courant, Issacson, and Rees. In Fig. 3 the advection
method is derived from how a rectangle is traced back along
the characteristic direction of the equation.

By summing up the overlaps of the rectangles and
rewriting the result in conservation form, the following-first
order scheme is found:

uz+1/2=u—&L;H—ldgu, e, >0, I=1,2 (4a)
un+l_u+i CIA:(uG!‘Fl,"z:O- (4b)

At - Ax,
The scheme is monotone since the solution at the advanced
time level is a positive weighted sum of the current level and
the surmn of the weights is unity. The second part of the
scheme is in conservation form and is called the corrector
step. The relations described in the first part of the scheme
are called the predictor step. From a truncation error
analysis, it is necessary to center u,,,» both in time
and space in order to obtain second-order accuracy. To
accomplish this, the first part of the difference scheme is
augmented by limited central difference approximations to
the spatial derivatives. The predictor equation (4a)} becomes

1 — A
“a+1/2=“+‘(1_C:)Lr)dau—q—Jszﬁ'—lAgu, I=1,2

2
{4b’)

The difference scheme is dependent upon the signs of the
coefficients of the advection equation. This dependence is

\
|
|
|

FIG. 3. The rectangle traced back using the characteristics of the
advection equation.
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exhibited primarily in the predictor equations where one-
sided differences are used. The corrector equation, although
symmetric in structure really is using upwind or one-sided
differences as well. The monotonicity is destroyed by the
addition of the central difference term, even using van Leer
limiting. A stronger form of limiting is required to preserve
monotonicity [18]. The appropriate generalization for
systems is the scheme

Ur'—U 2 A F(U T2
x a4 1/2 =0
At +E‘l Ax, ’ (5a)
where forf=1,2
UZI{ﬁ:RI((—)UzH,'zs (+)Ua+1/2) (5b)
1 L OFN —
asin= U3 (1-250) T
1
—E)LH] AﬂFI+1(UB+1/2) (5¢)
1 8F N —
(+)Uu+u2=Tm(U_§(I+ir‘a_l;)AaU
1
_5’1!+EA,8FI+1(U,H+1[2) (5d)
U:!+l/2=-Rl(U! U,er) (5¢)

Using F;=c¢,u and solving the appropriate 1D Riemann
problems for the advection equation, the equations reduce
to the difference equations for the advection equation. The
directions of the one-sided differences correspond to the
solutions of the 1D Riemann problems. This observation is
what is actually used in generalizing the advection scheme
to one for a hyperbolic system. By comparing the linear
advection scheme (4) with the nonlinear scheme (5), one
sees how fluxes can be generated which are influenced by
cells diagonal to the central cell. The specific terms in (5¢),
(5d) that add influence from the diagonal cells are the last
subexpressions. These terms are sometimes called the trans-
verse fluxes.

The corresponding unsplit difference scheme for the 3D
advection equation is derived by tracing a parallelepiped
back along the characteristics. The volumes of intersection
can be found, as in the 2D case, and a first-order scheme can
be written,

un+|

3
—u ¢ 4,u,
+y o +12_ g

At Ax, (6a)

=1
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where for /=1,2,3and ¢,>0

C:+1Ar+1A

Uy p1p=U— 3 B(auﬁ+l/2)

_Cz+2}~1+2

2 Ay(a”'y+]/2) (6b}

Cirahiiz
g =u— LR g

(6¢c)

_ Ct+1f1.'+1A
My r12=H— 3 pH

(6d)

There are three steps to this scheme; as data need to be
propagated a larger number of steps in the computational
lattice to affect the cell being updated. If the CFL conditions

s, 1=1,2,3, (7
are met, the above scheme is monotone using the same kind
of maximum principle argument as in the 2D case, The

corresponding second-order correction of the predictor
term (6b) is

1 —_— A
“a-»-uz:“‘f‘i(l ﬁcfflr}dex“_‘ﬁ%ﬁﬁ(auﬁﬂp)
Cry2hie2 .
__Tdy(auv+1/2}, l=1, 2, 3 (6b)

The appropriate generalization for systems is

UioU & RN
At =t A‘x;
where /=1, 2, 3
U:i:ﬁ:R-"((‘)U:ﬁ‘-UZ! (+JUoz+I,f2)
1 OF N —
(._)Ua.*,I',rZ:U""E(I—AféFI)AaU
1
*51.'4.1 AﬂFr+1(aUﬁ+1/2)
1
—EAI+2A?FI+2(:!U))+U2)

1 oF\ —
(+JUm+uz=Ta(U*§(I+}~ra—{;)AaU

1.
—5"-“1 AgFr ((Ugs )

i
_§Al+2 AyFI+ Z(mU'p+l,’2))
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1UB+ 12= RI((— ya Uﬂ+ 12+ (+)zUB+ 1/2}

¢U7+ 2= R.*((f Yy UH 1/2r {+ )aU” 1/2)

A
(—).zU.a'+ 2= U'_{;_z AFFH 2(U~,r+ z,fz)

(+)aUﬁ+l,’2 = Ta((—)xUﬂ+ 1/2)

A
(7)1U7+1{2= U_—I;_ldﬂFl+l(Uﬁ+1,f2)

(+ij7+ 12 = Tx((— ijy+ 1/2)
Ua+1/2= R{U, Usi 1k

As in the 2D case, the linear difference scheme was written
in a form suggestive of the nonlinear case. Instead of having
one-sided differences, solutions of Riemann problems are
used to resolve which direction the various discrete solution
mcrements are propagating. The transverse flux structure is
even more complicated in three dimensions. The larger
amount of data available to influence the central cell implies
a larger number of Riemann solutions to resolve which con-
tributions are valid. The number of Riemann problems to
resolve is four solutions per face per time step or 12 solu-
tions per cell per time step. It is tempting to call these
schemes remapping algorithms because of their geometric
origin. In fact they can be used for this purpose. However,
remapping algorithms cannot be directly used to solve non-
linear systems becausc of their dependence on a single
characteristic speed.

The discrete Fourier analysis of the linearization of the
above system yields CFL numbers contrained not to exceed
one. The CFL numbers would use the characteristic speeds
of the gradient of the flux function instecad of the three
advection velocities, The following section describes the
appropriate time step restrictions for the equations of gas
dynamics.

IMPLEMENTATION

To illustrate the algorithm, it is implemented using the
equations of inviscid compressible gas dynamics. The solu-
tion vector for this set of equations is

where p is the fluid density, (u, v, w) is the cartesian velocity
of the fluid, and £ is the total fluid energy per unit mass. The
flux functions are:
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pu po
puu+ p pou
Fy= puv ., Fa=) pw+p |,
puw pow
puE + pu poE + pv
pw
pwi
F,= pwo
pww+p
pwE+ pw

The variable p is the scalar pressure. The introduction of p
leads to more unknowns than equations. An additional
closure relation called the equation of state is introduced:

p=f{p, E~1{ul*/2).

For the exampies in the next section, the ideal equation of
siate is used:

1= (" I?JHFE"‘:M{—'I?‘)

The boundary conditions modeled are inflow, reflecting,
and outflow conditions. Inflow and outflow conditions are
analogous to Dirichlet and Neumann boundary conditions.
How these conditions are differenced is outlined below.
Neglecting the boundary conditions, for the moment, and
assuming the availability of a Riemann solver, the difference
scheme can be used as outlined in the previous section.
However, some problem-dependent modifications are made
that show discernible improvement. None of these changes
are new and they are used in one and two dimensions. The
modifications include a small amount of artificial viscosity,
slope flattening, and characteristic projections. These items
are described below.

The first modification to the basic scheme is the addition of
a small amount of artificial viscosity (~{ the nominal
value). Its purpose is to obtain additional stabilization of
oscillations behind strong shocks. If a similar amount of
viscosily is used with a standard scheme, it would be incon-
sequential. The structure of the dissipative term is a simple
scalar viscosity based on the 1D viscosity of Lapidus [19].
Note also that the mass is diffused along with the total
energy and momentum in contrast to what is done in the
method of von Neumann and Richtmyer [4]. The corrector
step of the scheme is modified as

Un+l_U 3 AJF!(Ugiiﬁ)_ 3

= 4,C AU, 4.
At +[§1 Ax; f;l a4 172 [ - N |
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The coefficient C, , ,, is a face-centered quantity that is an
average of coefficients that are generated at vertices:

, 1
Ciiip= —gmin (0’1 Cirvzv 124 okt 12 +%
= 1,0
FZZLo
. 1
Cj+l/2= —q min Oaz Cl+1/2+i’,j+1,v‘2,k+l,’2+k‘
= — 1.0
¥=_To
. 1
Cyy 2= —4qmin Oaz Civizergiiaekerz )
= 1,0
F- 1o

The recommended value of the parameter g=90.1. Finaily
the vertex terms are a simple approximation to the
divergence of the fluid:

1
i . . ) .
AL R ok { PRI oF SRR

PRy

1
T
TL
/.i',.,
Aﬁ“‘ Fia g 1

+ e P

A, |
T vtw R W W) |

Slope flattening is another dissipation mechanism for
reducing oscillations behind a strong shock. Flattening
locally reduces the difference scheme to first order around a
shock. The method used here is the technique described in
(8]. First define a linear function

nz)=1-—"2

Z)— 2y

Next limit the range of the function between 0 and 1:
fi(z) = min(1, max(9, n(z)}).

Define the following cell centered variable:

_(|Pi+1*Pir—1|)
M
[Piv2— Pial

g o —uy >0,

Pivi—Pi )

- >4
min(p; 1, p; 1)

1, otherwise.

Similarly variables ¥° and 7 may then be defined by
successively substituting j and & for / and v and w for w.
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Corresponding to ¥ is

x“=min(z ., §“),  where s=sign(p,,,—p._,).

Similarly, variables y” and x" may be defined by, again,

successively substituting j and & for { and v and w for u,
Finally Iet

x=min(x* z° x*).
Then the slopes are modified as

A, =>y4d,, =123

The recommended values of the parameters are 6 =0.33,
zo=0.75, and z, = 0.85.

The last modification to the difference scheme is a twofold
change in the central difference part of the predictor step:

] OF ) —
(}U«+J,2=U+5(I—A,a—(;>gtu_
1=1,2,3
1 aF\\ —
(+)Ua+1,'2= T, (U‘E(I-}-l,a—[;)) A,U— -,
I=1,2,13.

First the increment of the left and right states from the cen-
tral difference terms is calculated using the primitive flow
variables. Second, the increments are further filtered so that
jumps propagating away from a given cell edge do not con-
tribute to the increment at the cell edge. This is redundant
for lingar systems but makes a noticeable difference for this
nonlinear system. The modifications of the left state calcula-
tion is written out. The corresponding modification to the
right state is similar and consequently omitted.

Tt is found that using the primitive variables in the central
difference increment calculation leads to less error in the
pressure gradients than using conserved variables. The
primitive variable formulation is of the form

such that

v S eV
61+Z A;E;]—O

I=1
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and
u p 00 O v0 p 0O
0 u 00 1/p Ov DO O
A;=10 0 «0 0 ], A=} 00 v 0 1/p |},
0O 0 0u O 00 0 » O
0p200 u 00pc20 v
w0 p 0
OwO 0 O
A3= OOWO 0 .
000 w 1/p
000 p* w
where
2_0p_p0p
dp ptie
and
|ul
~E——-.
¢ 2

The mapping for physical values of gas dynamics is one-to-
one and onto, between the conserved and primitive
variables for a reasonable equation of state. To calculate the
increment from the central difference part of the scheme,
transform that part to primitive variables:

(- War1p= V+s(I-4A)4,V.

Once having obtained (_,V,,p, then transform back to
conservation variables. The above fragment is further
modified by a characteristic projection technique due to
Harten [207]. First an arbitrary reference state may be
added as only the jumps in the solution are used:

(—)V:1+1,"2'_ Vir=V—"V.g+ %(I—AIA!)A_IV- (8)

Let

it !
e, e, .., e

be the five eigenvalues of A, and
i i . { i i
rl,rz,...,r’s, TR U 8

be the associated right and left eigenvectors. The eigen-
vectors are assumed to be scaled such that they are
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biorthonormal. For /=1, 2, 3 define a projection operator
on a vector w,

(7, - w)signle;,) + 1) r),.

5
Pw=1Y
m=1

P! is then applied to the right-hand side of (8):

PV —V!

ref

)+ PIE(I—4,4,)4, V)

=P(V-V)+4 Z {sign(e

m=1

AWV .

W+ 1)

x {1 —4e! )

A reference state is chosen to simplify the projection as
much as possible:

Vi =V+i(1—Ael A,V

refl max

Here e/ . is the maximum value of all the eigenvalues.
Using this particular reference state vields the following
increment in primitive variables:

A
(—]V:z+l,‘2"Vf‘eF+ 4r Z (ei'nax_ein)

m=1

x (sign(ey,) + 1), - 4, V) 7.
For the right state, the projection operator is
5

Puw=t Y )

m=1

w)(1 —sign(e;,)) 7.

Similarly, the right state reference value is

Vig=V =3l + &, 4,V

™mn

and

PO
Ay
‘
(+)Va+1/2=T (Vrel' I Z mm

« (1 —sign(e,))(1', - 72 V) ,,,)

Here ¢/, is the minimum value of all the eigenvalues.

The time step restrictions used in this implementation,
following from the discrete Fourier analysis mentioned
above, are

max {lef | Ap<t.

l€ig3,1€msS
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Because of the nonlinearity of the equations, a CFL number
less than one is used. All the test problems described below
use a CFL number of 0.8.

An operational view in formulating boundary conditions
is used. An operational point of view means that the
difference scheme is divided into small parts and simple
boundary conditions are applied to each part. The advan-
tage to the approach is simplicity. By partitioning the dif-
ference scheme into small enough pieces, one-dimensional
boundary conditions can be applied. In addition, the stencil
(support) of these boundary conditions is smaller. The dis-
advantage is that boundary conditions need to be applied a
larger number of times than alternative global approaches.

The types of boundary conditions outlined in this paper
are reflecting, inflow, and outflow conditions. Inflow condi-
tions are much like Dirichlet conditions and are generally
set by making boundary or so-called ghost cells equal to the
inflow values. Reflecting boundary conditions are physically
akin to having a wall or solid impediment block the flow.
This condition is more complicated than inflow but it can
be handled by appealing to symmetry and the physical
boundary conditions of the compressible equations at
boundaries (called slip boundaries). The last boundary
condition, outflow, tends to be the most problematical. If
the outflow is supersonic or nearly constant, a Neumann-
like boundary condition s used. That is a finite difference
approximation of the normat derivative of the flow variables
set to zero. For subsonic flows with some variation more
complicated absorbing boundary conditions must be used.
Only simple outflow conditions are discussed. All three
types of boundary conditions share the property that
cells just outside the computation region must be set to
implement these conditions.

The implication of the above discussion is that boundary
conditions must be set for the Riemann solver steps, for the
predictor step where slopes are determined, the slope
flattening algorithm, and the artificial viscosity.

The Riemann solver step boundary conditions are easiest
to implement as they are quitc local. Assume that a
boundary is at the index i, + L and that the computational
region is locally to the right of i, + 4 (i i, + 5)}. Then for the
approximate solution of the Rlcmann problem

Ur',:,+ 2= R(Uf,,+1, Uf,,),

a value for U, must be supplied. The value for U, for inflow
boundary conditions is

U Ulnﬂow

The outflow boundary condition is Neumann-like:

U Ur1,+l
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The reflecting boundary condition has the form

pr'b+l
P18y
U,= Piy+1li+1
Pir1Wii+1

pib+lEr'b+l

Boundary conditions in the y and z direction are easily
deduced from the above relations.

The slopes in the predictor step reach over two cells for
the fourth-order approximation and one cell for the second-
order approximation. Assuming, once again, that the
boundary is at the index i, + 1 and that the computational
region is locally to the right of this boundary, then the
values of U must be supplied at the indices i, and i, — 1. For
inflow with fourth-order slopes this implies that

V.=V,

'y ip— 1 = Vinflow'

Outflow conditions are of the form:

V,=V,

ih—

=V

ip+ 1

Second-order slopes only require the value at V.
Reflecting boundary conditions require more detail. Tt is
observed that normal velocities at cell edges of reflecting
boundaries should be as close as possible to zero in order
not to cause spurious waves. Tangential velocities, density,
and pressure (remember, primitive variables are being used)
are reflected in the usual manner. To derive values for
boundary ghost cells for the slopes, two conditions are
imposed:

e 14
0_“53,4-! - ZA!Vib+l
and
ui{,*l = —ufb+2'

The fourth-order unilimited slope formula can be used to
determine the values of

— 1
u"ia_ _3uib+l - ul'b+2 - §(ur'b+3 + ur',g,+2)‘
To summarize, the values of the boundary ghost cells are

Piy+1
_3uib+1 —Uy 42— %(uib+3 +uy42)
iy Uig,+1 ]
Wi

pr',o,+l
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Piyv2
_uip,+2
Vi—1= Uitz

wie,+2

Pip+2

Second-order slopes only require an obvious modification
to V, and there are no ¥, _ .

The slope flattening algorithm does not require a very
exact treatment of the boundary conditions. Simple reflec-
tion is done instead of forcing the normal velocity to zero at
the boundary edge. The flattening does reach much further
out than any other part of the algorithm. Both inflow and
outflow boundary conditions require four ghost ceils. For
inflow at i,

Pi 3=Py 2= Pi-1 = Pi,= Pinflow
and

Upy 2= Uy | = U, = Uinflow-
For outflow conditions
Pi_3=pPi 2= P 1=Pp="u+1
and

ur}—Z:ur’b-[ =ur},=u!ﬁ+l‘

For refiecting conditions

Pi_3=Pyras Po_2=Pi+3
Piy 1= Piyy2s Po=Fyins
and
Uy 2= —HUj43, Upp_ 1= — Uy 42, Up= —Uj 4 q-

The artificial viscosity calcuiation uses the same boundary
data as the slope flattening algorithm. What distinguishes
the artificial viscosity from the other terms requiring
boundary data is the apparent mixing of directions. The
Riemann solver, flattening, and slope calculations are essen-
tially one-dimensional. By breaking the artificial viscosity
into one-dimensional sweeps this same kind of application
of boundary conditions can be preserved. This is especially
important at corners in a nonrectangular computationai
mesh.
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TEST PROBLEMS

To convey a qualitative idea of the performance of this
scheme, several calculations are done. These calculations
ar¢ the 1D interacting blast problem described in [7], as
well as the 2D Mach reflection problem described in the
same reference. Benchmark calculations in three dimensions
are still relatively rare. The astrophysical calculations of
Arnold [21,22] are used as comparisons for the three-
dimensional case. All of these problems can be run in
various orientations in order to test for the preservation of
symmetry by the finite difference scheme. Some of the
problems have been run using different orientations to
verify correct coding, but no further discussion is included
in this paper about symmetry preservation other than that
the obvious symmetries are preserved. The Riemann solver
used in these calculations is an implementation of the
algorithm described in [127.

The 1D blast problem is calculated on the unit interval
using a ratio of specific heats, v, of 1.4, The initial density
everywhere within the interval is 1.0 and the velocity s
everywhere zero. The problem is driven by the variation in
the pressure. In the interval (0, 0.1) the pressure is 1000. In
the interval (0.9, 1.0} the pressure is 100. The remaining
region in the problem has a pressure of .01, The boundary
conditions are reflecting on both ends of the interval. As
menttoned above, the CFL. number used in this test
problem and the other two problems is 0.8. The resuits dis-
played in [77 are at resolutions of 200 and 1200 cells. The
results in [7] are also overlayed with a solution from a
highly refined run that was labeled the “converged result.”

Figures 4 and 5 show density plots of the finish time
(0.038) using the unsplit algorithm in 1D, The results are
very similar to the MUSCL code results in the review paper.
This 1s not surprising since the algorithms have roughly the
same spatial and temporal accuracy and use similar
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FIG. 4. Blast problem using 200 cells.
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FIG. 5. Blast problem using 1200 cells.

upstream centered differencing. At the resolution of 1200
points, the unsplit solution is converged to the larger
features of the solution. Only the left-facing contact discon-
tinuity is noticeably different from the PPM solution. The
difference observed is some smearing. Consideration was
given to putting in contact-steepening in the unsplit algo-
rithm, but on the advice of Colella {23 ], it was left out. The
reason for this omission is that unphysical instabilities are
observed at contact surfaces in higher dimensional flows
and are traceable to the contact-steepening algorithm.

It seems almost paradoxical that the right-facing contact-
discontinuity is not also smeared, as it is a stronger wave
than the left-facing contact. The reason for the steeper right
contact is that it has a smaller lifetime than the left. The rate
of diffusion of the linearly degenerate wave is proportional
to the number of time steps through which it is propagated.

The 2D Mach reflection is a more complicated test
problem. This simulation is performed in a rectangular
region of length 4.0 and height 1.0. The boundary condi-
tions are set to simulate a Mach 10 shock in a shock tube
hitting 2 ramp with an angle of 30° from the horizontal. To
fit this problem into a rectangular box, the Mach 10 shock
is initialized with an angle of 60° from the x axis. The shock
touches the x axis at the point . The ratio of specific heats
is again 1.4. The preshocked values of density, velocity, and
pressure are 1.4, 0.0, and 1.0, respectively. Using the equa-
tions in Sections 67 and 68 of Courant and Friedrichs [24],
the one-dimensional postshock values of a Mach 10 shock
are 8.0, 825, and 116.5 for the density, velocity, and
pressure, respectively. The one-dimensional velocity must
be broken up into components paralilel and perpendicuiar
to the x axis.

The bottom of the ramp is simulated with a reflecting
boundary along the x axis in the z direction. However, the
boundary only extends over the interval (£, 4). On the inter-
val (0, {) an inflow condition with the postshock values of



164 JEFF SALTZMAN

0. 160E+01
-
0.000E +00
U.O00E400 0. 100E+04 0.200E+D} 0. 300E+01
CONTGUR FROM  1.000C 7@ 19.000  L@WTBUR INTERVAL @ D0.S0000  PTI3.31=  8.0000
FIG. 6. Double Mach reflection problem on a 30 x 120 grid.
0. 100E+01 T T
8.000+00
0. 000E+00 0. 100E 01 0. 200 +01 0. 3006401
CONTBLR FROM  1.2000 7@ 19.800  C@NTRUR INTERVRL @F 0.60000  PT13,31z  8.0000
FIG. 7. Double Mach reflection problem on a 60 x 240 grid.
0. 100E+01
0.000E 00
0.000E+00 0.100E+0} 0.200€+01

CENTRUR FREM 1, 2000 13 21.600 CBNTBUR [NTERVAL BF 0.60000 PT13.3)1:  6.0000

FIG. 8. Double Mach reflection problem on a 120 x 480 grid.
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the shock is maintained. To complete the description of the
boundary conditions at the bottom a reflecting boundary in
the x direction is set at £, These conditions act as a “knife
edge” that attaches the flow to this point. The boundary
conditions at the right edge of the box are set to the
preshocked values of the fluid while the boundary condi-
tions on the left side of the box are set to the shocked values
of the fluid. The top boundary condition is time dependent.
The movement of the shock is tracked by the analytic values
derived above and the preshock and postshock values are
inserted before and after the shock, respectively, Zones
through which the shock passes are set to a linear combina-
tion of the postshock and preshock values according to the
volume fractions.

Figures 6, 7, and 8 show density fields for calculations
done on 30 x 120, 60 x 240, and 120 x 480 meshes, respec-
tively, The density results tend to be closer to the PPM
results in the review paper [7] than to the MUSCL results.
The instabilities pointed out in the MUSCL scheme are not
present in these runs. It is much harder to obtain a quan-
titative measure of accuracy in these tests since a converged
result is not available. It is clear that the aigorithm does not
suffer from the problems encountered using the Godunov,
MacCormack, BBC, or FCT algorithms. The Godunov,
MacCormack, and BBC methods all suffered from too
much numerical dissipation. The FCT algorithm generated
very noisy solutions with some structures {the unstable jet)
diverging from what appears in the other solutions. The
results can also be compared to those found in [8] as the
3D algorithm is identical to Colella’s algorithm in 2D.

The three-dimensional problem calculated in this paper is
a Mach 6 jet described in Arnold’s thesis [217 and pub-
lished in [22]. The computation region is a parallelepiped
with length {x direction) 16.0, and height (z direction) and
depth { y direction) 8.0. Initially the region, called the Inter-
galactic Medium (IGM), is at rest with a unit density and
sound speed. At the y — z plane with x coordinate equal to
zero a jet of material is injected into the IGM with a density
of 0.1 and a local Mach number of 6.0. The beam is in
pressure equilibrium with the IGM. The local Mach num-
ber is the ratio of the velocity of the beam to the sound speed
of the beam. To find the velocity of the beam, the pressure
equilibrium s used:

Hpeam &= Mcambienl V pambienr/pbeam-

The Mach number is M, sound speed is ¢, and density is p.
The subscript “ambient™ refers to the material in the IGM
while subscript “beam” refers to the inflow material. The
size of the opening of the jet into the IGM is a unit square
in the positive quadrant of the y — z plane with one corner
placed at the origin. Where the beam is not being injected
through the y —z plane outflow boundary conditions are
imposed. Only the positive octant of the flow is calculated in
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this example. As a result, symmetry planes are imposed on
the x — y and x — z planes passing through the origin. The
other boundary planes in the problem can be handled with
either outflow or symmetry conditions as signals do not
reach them within the running time of the simulation.
Although many features of the jet are stabie, the overall
problem is unstable enough to inhibit comparisons of con-
vergence or other detailed numerical properties. Figures 9a,
9b, 9¢ correspond to Figs. 1a, 1b, Ic in [22]. Qualitatively
the pictures are similar, but even some of the large features
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are different. The location of the front of the bow shock is
further ahead in Arnoid’s results. The contact discontinuity
i1s more widely separated from the beam shock in Fig. 9a
than in the corresponding results in [22]. The shock struc-
ture within the beam is similar to the results in [227].

The cross sections in Figs. 10a—10f correspond to
Figs. 2a-2f in [22]. Arnold and Arnett do not describe the
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location of these cross sections, but in Arnold’s thesis they
are documented as 8.0 beam radii (Figs. 2a, 2d), 5.33 beam
radii (Figs. 2b, 2e), and 2.67 beam radii (Figs. 2c, 2f). A
beam radius is normalized to unity. The largest difference
between the unsplit method of this paper and the split
method of Arnold is the symmetry of the results. The
operator split method cavses asymmetries in space that
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FIG. 10. Axial cross sections at time 2.4 for density, pressure, and the velocity field.
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FIGURE 10—Continued

cause different instabilities to appear. The obvious effect of
this is the shape of the beam. The unsplit method appears to
have a much more collimated beam than the split method.
The cross sections in Figs. 10a, b, ¢ are much more square
than in the corresponding cross sections in Figs. 2a, b, ¢
of [22]. A possible cause for this difference 15 a larger num-
ber of unstable modes being excited by the split method
leading to greater beam degradation.

CONCLUSIONS

A three-dimensional unsplit difference scheme is outlined
in this paper and tested on several problems. The results of
the test problems show the algorithm to be accurate enough
to be competitive with other methods. The unsplit scheme
also has the advantage of preserving symmetries destroyed
by splitting as exhibited by the astrophysical jet example.
The disadvantage of the scheme is the number of required
Riemann solves per computational cell face. Every face of a
computational cell requires four solves which means 12
Riemann solves per cell per time step. However, one cannot
conclude that the unsplit method is four times slower than
an operator-split method without taking into account their
reiative accuracies as well as the fraction of time taken in the
Riemann solver and the rest of the algorithm. Further work
must be done in making these kinds of comparisons. Cer-
tainly the method can be made less costly by making the
Riemann solves less costly. Work is currently being done in

comparing the relative performance of various approximate
Riemann solvers mentioned in the text.
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